Existem vários tipos de modelagem utilizados em Data Warehouses, cada um com suas vantagens e desvantagens. Aqui estão alguns dos tipos mais comuns:
- Modelagem Dimensional: Este tipo de modelagem é amplamente utilizado em Data Warehouses e é baseado em dimensões e fatos. As dimensões representam as características dos dados, enquanto os fatos representam as medidas dos dados. Esse tipo de modelagem permite que os usuários acessem facilmente as informações por meio de relatórios e análises.
- Modelagem Entidade-Relacionamento (ER): Esse tipo de modelagem é baseado no relacionamento entre entidades, ou seja, objetos, pessoas ou eventos do mundo real. As entidades são representadas por tabelas e seus relacionamentos são estabelecidos por meio de chaves estrangeiras. Esse tipo de modelagem é adequado para bancos de dados transacionais, mas não é tão eficiente para Data Warehouses.
- Modelagem Star Schema: A modelagem Star Schema é uma variação da modelagem dimensional que organiza os dados em torno de um fato central, com as dimensões ligadas a ele em forma de estrela. Esse tipo de modelagem é eficiente e fácil de usar, mas pode ser limitado em termos de flexibilidade.
- Modelagem Snowflake Schema: A modelagem Snowflake Schema é uma extensão da modelagem Star Schema, em que as dimensões são normalizadas em subdimensiones. Isso ajuda a reduzir a redundância dos dados, mas também pode tornar a modelagem mais complexa.
- Modelagem Semi-Additive: A modelagem Semi-Additive é usada quando algumas medidas podem ser somadas em algumas dimensões, mas não em outras. Por exemplo, você pode somar as vendas por dia, mas não por mês. Esse tipo de modelagem é usado quando há uma necessidade de fazer cálculos complexos com medidas.
Esses são apenas alguns exemplos de tipos de modelagem usados em Data Warehouses. A escolha do tipo de modelagem depende do tipo de dados que você está trabalhando e dos requisitos de negócios da sua empresa.