Archive March 4, 2022

Executive Summary [Fevereiro/2022]

Esta é a Executive Summary, a nossa newsletter para executivos e líderes que gostam de contar com uma curadoria de conteúdo e preferem um formato para ser consumido de maneira objetiva.

Na newsletter de hoje temos 2 tendências muito interessantes para suas estratégias de transformação digital:

Tendência 01/02
Design Patterns em Big Data

O que é?
Existem milhares (talvez milhões) de fontes de dados. Existem centenas (talvez milhares) de tecnologias que processam dados. Portanto existem milhões de possibilidades na construção de pipelines de coleta e processamento de dados. Porém, as diversas opções são, na verdade, parte de um número menor e arquetípico de modos de processamento dos dados.

Por que isto é interessante?
Entender os tipos de padrões existentes para o processamento de dados, pode ajudar as equipes técnicas a criar soluções resilientes e com maior rapidez, trazendo maiores benefícios de negócio para a empresa.

Como posso colocar em prática?
Fique de olho em nosso site para novidades!

Tendência 02/02
Indexação de conteúdo de documentos escaneados

O que é?
É muito comum que as empresas possuam documentos escaneados, ou mesmo gerados digitalmente em PDF. Fazer a gestão do conhecimento contida nestes documentos é algo complexo.

Por que isto é interessante?
Criar processos que possam extrair e indexar o conteúdo destes documentos, disponibilizando-os ao alcance de uma ferramente de busca corporativa “a la Google”, permite que a empresa possa facilmente encontrar o conhecimento em seus documentos.

Como posso colocar em prática?
Utilizando arquiteturas de processamento de dados que possam:
– Extrair o texto do documento
– Identificar keywords importantes
– Indexar todo este conteúdo em uma ferramenta que busca

Update Sem Where [Fevereiro/2022]

[Análise]   
E iniciamos o nosso ano com um bom ritmo de novidades!

Justificando seu marketshare, a AWS é a cloud com mais novidades neste início de ano, onde vemos um foco maior em soluções e arquiteturas que geram valor para os clientes.

Tendência esta também vista em seus competidores: um foco maior em soluções que geram valor e menor em “tecnologia pela tecnologia”.

Também temos um interessante novo competidor dentro do nem-sempre-tão-comentado ramo dos bancos de dados NewSQL, que são os bancos de dados relacionais e escaláveis, que procuram unir os mundos SQL e NoSQL. Veja a documentação do Yuga, que chega para brigar com competidores como Google Cloud Spanner e Cockroach DB.

Boa leitura!

[Big Data & Machine Learning
Yuga: um banco de dados escalável e resiliente
– Explicação sobre o algoritmo de Árvore de Decisão
Sete passos para aprender Machine Learning
– Um guia para a escolha de qual modelo de Machine Learning utilizar
– Uma comparação entre PyTorch e TensorFlow
Design Patterns em MLOps

[Amazon Web Services]  
– Modelos de Detecção de Fraude da Amazon em Python
– Arquitetura para extração e indexação de conteúdo de documentos
– Como monetizar suas APIs baseadas em dados
– Analisando os benefícios do AQUA para a performance do Redshift
– Embedando o Quicksight Q em suas soluções
Detecção de anomalias com o Opensearch

[Microsoft Azure]  
– Monitoramento avançado com Azure Monitor
– Integração de Logs com Logz.io

[Google Cloud Platform]  
– Criando modelos de Machine Learning para a área de Seguros
Análise Exploratória de Dados na GCP com Netapp
– Perpectivas de CyberSecurity na CISO 2022

[Databases]  
Flyway: Lidando com migrações que falharam
Flyway: Devops 101 com Flyway
Flyway: Customizando deploys de bancos de dados
Postgres: FDW para arquivos Parquet no S3
Postgres: pg_query_rewrite permite reescrever queries executadas
Postgres: PgSpider permite o uso do Postgres como um Presto
Postgres: Nova versão do PgPool lançada
MySQL: Point in time Recovery
MySQL: Configurando Disaster Recovery
MySQL: Dump & Load
MongoDB: Conector para o Apache Kafka lançado
MongoDB: 10 sinais de que sua arquitetura de dados está limitando sua inovação

Executive Summary [Janeiro/22]

awesome science trick versus engineering workaround on how to balance two forks on top of a glass

Esta é a Executive Summary, a nossa newsletter para executivos e líderes que gostam de contar com uma curadoria de conteúdo e preferem um formato para ser consumido de maneira objetiva.

Na newsletter de hoje temos 2 tendências muito interessantes para suas estratégias de transformação digital:

Tendência 01/02
Machine Learning Engineering (versus Data Science)

O que é?
Criar modelos matemáticos que encontram padrões nos dados e, com isso, conseguem realizar predições, é o trabalho principal do Data Scientist. A nova tendência é que estes profissionais passem a disponibilizar (via empresas ou diretamente), modelos prontos para o uso em plataformas de Cloud (GCP, AWS, Azure, etc) ou mesmo via um marketplace específico.

Por que isto é interessante?
Com o crescimento desta tendência, as empresas não precisarão mais ter um Data Scientist em suas equipes. Porém, os modelos disponibilizados ainda não são abstratos o suficientes para serem usados por Analistas de Negócio ou Programadores em geral. Por isso a necessidade de Machine Learning Engineer, que é um profissional formado basicamente em Engenharia de Dados, mas com conhecimentos em Data Science. O foco deste profissional será construir a soluções que utilizem os modelos de predição através da construção e monitoramento de Pipelines de Dados.

Como posso colocar em prática?
As principais nuvens já disponibilizam modelos pré-treinados para determinados problemas, alguns inclusive com soluções do tipo “drag-and-drop” (arraste e solte), sem precisar programar. Com isto, sua empresa pode fazer uso de modelos preditivos sem precisar criar uma equipe de Ciência de Dados.

Tendência 02/02
Migração para Nuvem AS-IS: Não faça isso

O que é?
Migrar arquiteturas de dados on premise para a nuvem pode ser uma verdadeida dor de cabeça. Afinal, a quantidade de dados envolvidos pode ser grande, a janela de manutenção pequena e o espaço para erro é inexistente. Por isso, para facilitar, muitas empresas migram as estruturas on prem para a nuvem “as is”, ou seja, mantendo a mesma arquitetura.

Por que isto é interessante?
Migrar para a nuvem não é apenas uma questão de não precisar gerenciar um datacenter. Pode ser muito mais: uso sob demanda, elasticidade sob demanda, separação de storage e processamento, utilização de diferentes serviços sob demanda, etc. Toda esta cartilha de opções está à sua disposição ao migrar para a nuvem, por isto é um bom momento para rever a arquitetura da sua solução para que você possa economizar/explorar/diversificar sua solução com ferramentas que antes não dispunha.

Como posso colocar em prática?
A AWS oferece o “AWS Well Architected Framework” com diversas ideias de arquiteturas para soluções comuns no mundo dos negócios.